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Sexual selection promotes the prevalence of heritable traits that increase an

individual’s reproductive rate. Despite theoretically strong directional selec-

tion, sexually selected traits can show inter-individual variation. Here, we

investigate whether red skin ornamentation, a rare example of a male mam-

malian trait involved in mate attraction, influences fecundity and is heritable

in rhesus macaques (Macaca mulatta), and explore the mechanisms that are

involved in maintaining trait variation. Interestingly, the trait is expressed

by and is attractive to both sexes. We collected facial images of 266 free-

ranging individuals and modelled skin redness and darkness to rhesus

macaque vision. We used 20 years of genetic parentage data to calculate

selection gradients on the trait and perform heritability analyses. Results

show that males who were both darkly coloured and high-ranking enjoyed

higher fecundity. Female skin redness was positively linked to fecundity,

although it remains unclear whether this influences male selectiveness.

Heritability explained 10–15% of the variation in redness and darkness, and

up to 30% for skin darkness when sexes are considered separately, suggesting

sex-influenced inheritance. Our results suggest that inter-individual varia-

tion is maintained through condition-dependence, with an added effect of

balancing selection on male skin darkness, providing rare evidence for a

mammalian trait selected through inter-sexual selection.
1. Introduction
Sexual selection promotes the prevalence of heritable traits that increase an

individual’s reproductive rate [1,2]. Any trait that confers an advantage to

individuals in reproductive competition should theoretically be under strong

directional selection, with extreme phenotypic trait expression rapidly becoming

fixed in the population. Despite this, sexually selected traits can exhibit a great

deal of inter-individual phenotypic variation, with numerous mechanisms

proposed to maintain this variation. First, if the level of trait expression is depen-

dent on the carrier’s condition (condition-dependency), there might be low levels

of heritability of sexually selected traits despite a strong linear association

between phenotypic expression and fecundity (e.g. stalk-eyed flies, Cyrtodiopsis
dalmann [3]). Second, variation can also be maintained though balancing,
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non-directional selection processes, in which there is no linear

correlation between phenotype expression and lifetime

reproductive success. For instance, disruptive selection can

maintain diversity when the extremes in trait variation have

reproductive advantages (e.g. lazuli buntings, Passerina
amoena [4]), especially in cases where the evolution of a male

sexually selected trait is under a complex interaction between

different mechanisms of sexual selection (e.g. cockroaches,

Nauphoeta cinerea [5]; three-spine sticklebacks, Gasterosteus
aculeatus [6]). Another mechanism of balancing selection is

overdominance in which variation is maintained because the

most successful males are heterozygous (e.g. Soay sheep,

Ovis aries [7]). Finally, it remains possible that in some cases,

traits have indeed been under strong directional selection

and that the inter-individual variation in traits perceived by

human observers or detected by our measuring tools is un-

related to variation in reproductive output, such that the

perceived variation is not biologically meaningful.

Uniquely among mammals, certain primate species exhi-

bit bright and extravagant red skin colours involved in

intraspecific communication [8,9]. One of the best-studied

species in this regard is the rhesus macaque (Macaca mulatta),

in which the ornament is expressed by and attractive to

both sexes. Coloration is exhibited in the face, genital and

hindquarter areas (referred to as sex skin), and reaches its

maximal expression in reproductive contexts—throughout

the mating season for males [10,11], and around the timing

of the peri-ovulatory phase for females [12,13]. The trait is

under the control of sex steroid hormones and is expressed

through an action on oestrogen receptors that influence the

degree of epidermal blood flow in the epidermis [14–16].

In females, oestrogen is synthetized primarily by the ovaries,

while oestrogen in males is produced through aromatization

of testosterone in the sex skin [15]. As oestrogen is produced

through different pathways in the two sexes, the trait is likely

to be sex-influenced—an autosomal trait in which expression

is nonetheless influenced by the carrier’s sex.

Experimental and observational studies have shown that

rhesus skin coloration is involved in mate selection: both

sexes show interest in darker red faces of opposite-sex con-

specifics [17,18], females sexually solicit dark red males

more frequently [19], and males pay more attention to

images of female faces collected during the peri-ovulatory

phase [20]. The ornament is hypothesized to be attractive

because it provides reliable information about a carrier’s

general condition (condition-dependency), with expression

influenced by various endogenous and exogenous factors

influencing blood flow and oxygenation, such as health,

stress and activity [9,16,21,22]. Moreover, male coloration

might be an indicator of immune strength because colour

expression has been linked to testosterone, an immuno-

suppressant [23]. Although sex skin coloration influences

conspecific behaviours in a sexual context, there is no evi-

dence to date that variation in skin coloration predicts male

mating success [11,19]; no comparable study has been

conducted for females.

Owing to the underlying physiological mechanisms

involved in the expression of the trait, condition-dependency

could explain inter-individual variation. This might also be

explained by an interaction between different mechanisms

of sexual selection. Indeed, morphological and behavioural

traits suggest that male rhesus macaques experience both

inter- and intra-sexual selection, including both direct and
indirect forms of intra-sexual selection. In addition to red

skin ornaments that are attractive to females (products of

inter-sexual selection), rhesus males exhibit large relative

testis volumes (indicating indirect competition at the level

of sperm) [24] and some degree of sexual dimorphism

in body weight and canine length (indicating direct com-

petition) [25]. At the behavioural level, males organize

themselves into a dominance hierarchy that provides

priority-of-access to fertile females and the ability to mate-

guard [26]. However, the efficiency of this mate-guarding

tactic is unclear [27,28], and females are frequently reported

to reject mating attempts by high-ranking males while

actively soliciting males of variable ranks [29,30], including

peripheral and extra-group males [31,32]. As there is no

association between dominance rank and male skin colour

[11,19], this could lead to complex nonlinear selection on

male skin coloration. Sexual selection processes could also

influence selection on female skin ornamentation because

male rhesus macaques are selective [33]. If skin colour is

informative about variation in female condition, males

should invest more time and energy towards dark red

females, which could potentially lead to directional selection

on female coloration.

The objective of the study was to: (i) assess whether the

variation in red ornaments influences fecundity and is herita-

ble in male and female rhesus macaques—two necessary

conditions for the trait to be considered under sexual selec-

tion; (ii) examine what types of selection the trait is under

by performing selection gradient analyses; and (iii) explore

how inter-individual variation in expression is maintained.

In addition to being expressed and used by both sexes, this

trait is of particular interest because it is one of the rare

examples of a mammalian ornament for which clear involve-

ment in mate selection at the behavioural level has been

demonstrated (see [34]). We hypothesized that maintenance

of inter-individual variation in this trait could be due to two

non-mutually exclusive processes. First, if the trait is con-

dition-dependent, it would show lower levels of heritability,

despite being a predictor of reproductive success. Second, vari-

ation could be maintained through nonlinear selection owing

to a complex interaction between different mechanisms of

sexual selection acting on both males and females.

We explored these questions in the large free-ranging

population of rhesus macaques on the island of Cayo Santiago,

Puerto Rico. This field site offers the most comprehensive

pedigree of any free-ranging population of non-human pri-

mate, providing a rare opportunity to probe the evolutionary

basis of traits in a long-lived mammal in a naturalistic setting

[35–38]. Because we are interested in variation in visual signal

expression, we explore skin colour and darkness variation

as perceived by conspecifics by transforming colour mea-

surements into rhesus macaque colour space. Intra- and

inter-individual variation in sex skin varies in both chroma-

tic (redness) and achromatic (darkness) components [13,39].

These two components covary [19], but are likely to be influ-

enced by different underlying physiological processes: while

variation in darkness reflects variation in blood flow, variation

in redness might also be influenced by variation in blood oxy-

genation, such that redder skin contains more oxygenated

blood [22,40]. As blood flow and oxygenation can vary separ-

ately, this may lead to different patterns of selection and

inheritance for these two components. To our knowledge,

this is the first study to assess the heritability of non-human
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mammalian skin coloration, and the first to investigate the

strength of different modes of selection on skin colour evol-

ution in any mammal species.
.royalsocietypublishing.org
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2. Material and methods
(a) Field site and subjects
The free-ranging population of rhesus macaques on Cayo

Santiago Island is managed by the Caribbean Primate Research

Center (CPRC) and was established in 1938 based on �400 mon-

keys [41]. The population is now composed of �1000 individuals

divided into naturally-formed groups, allowing male dispersal

and gene flow. The population shows no significant effect of

inbreeding [35,42], and the variance in lifetime reproductive suc-

cess between individuals is sufficient to create opportunities for

selection [43]. Date of birth, natal and current group, maternal

ID, and matriline membership are provided by the CPRC.
0141602
(b) Image collection and subject sampling
We collected images of faces as colour characteristics of sex skin

covary between areas [11]. In order to minimize the effect of

intra-individual variation, we collected images only from non-

moving subjects to limit any activity effects on skin colour. We

also collected images at the end of the six-month mating

season and onset of the six-month birth season (June 2012)

when male skin coloration reaches baseline [10], and before

most females reach the third trimester of pregnancy when they

develop a dark red pregnancy mask [44,45]. In order to consider

differences in female reproductive state as a potential confound-

ing factor in the analyses, we took note of any indicators of

sexual activity around the time pictures were collected (see

details below). We sampled individuals from all groups but

focused on those born in or currently residing in groups R

and V, two groups: (i) descended from different founding

females; and (ii) exhibiting no core home range overlap. We

also included roaming males (not in a social group). We collected

1.79+0.87 images per individual (range: 1–4) of 127 adult males

(87.6% of all males of 5 years old or older) and 139 adult females

(44.2% of all females of 3.5 years old or older). Multiple images of

subjects and a colour standard (X-rite ColorChecker passport)

were captured in RAW format from 1 to 3 m away from subjects

using a calibrated Canon EOS Rebel T2i camera with a 18 mega-

pixel CMOS APS-sensor and an EFS55-250 mm f/4–5.6 IS lens

[19]. Facial skin colour was quantified by measuring colour

values from images converted to 16-bit TIFF files using

DCRAW (Dave Coffin) [19].
(c) Assessment of skin redness and darkness
Details on the methods used to assess skin redness and darkness

can be found elsewhere [19]. In short, we first took average red

(R), green (G) and blue (B) measurements from a fixed portion

of the face and the neutral grey patches of the colour standard

RGB. Values for the faces and standards were then transformed

from the camera’s colour space to rhesus colour space [39]. Based

on the processing of colours early in the primate visual pathway,

we calculated redness as the Red–Green Opponency Channel,

which was measured as (LW 2 MW)/(LW þMW), and dark-

ness as the Luminance Channel (achromatic) as (LW þMW)/2

[46]—where greater saturation of blood is darker, and thus less

luminous. The average intra-individual coefficient of variation

between sets of images used in the analyses was low (redness:

6.1%, darkness: 5.3%) showing that trait measurement was

highly consistent within individuals, and thus repeatable. We

averaged all sets of images when more than one was available.
(d) Genetic parentage assignment and pedigree
information

The CPRC genetic parentage database spans a period of 20 years

(1992–2011) and was established using a combination of

exclusions and likelihood calculations [27,28,43,47]. Sires were

identified for 264 out of 266 (99.2%) of the subjects, with all our

male subjects excluded as potential sires in the remaining cases.

Maternal grandfathers were identified for 206 subjects (77.4%) and

paternal grandfathers for 216 (81.2%). The sample of subjects for

which facial images were collected included 64 mother–offspring

and 82 father–offspring pairs, including 34 cases in which the off-

spring and both parents were sampled. A total of 135 subjects had

at least one maternal half-sibling sampled and 196 had a paternal

half-sibling, with a total of three pairs of full-siblings. The sample

also included 19 grandparent–grandoffspring pairs.

(e) Measures of reproductive success
Lifetime reproductive success could not be used because subjects

differed in age, and only a fraction of the subjects (n ¼ 27) had

reached reproductive senescence (set at more than or equal to

17 years old [43,48]). Instead, we calculated fecundity (reproduc-

tive rate) as the number of offspring produced divided by the

number of years since first reproduction. In order to minimize

the risks of overestimating the variance in fecundity owing to

cross-sectional sampling, only individuals that produced at

least one offspring were included in selection gradient analyses

(n ¼ 81 males, 91 females). Note that most members of the popu-

lation that survived to maturity reproduce at some point in

their lifetime [43] and that male age at first reproduction greatly

varies among males but has no effect on lifetime reproductive

success [49].

( f ) Demographic variables and other confounding
factors

Age, mother ID, household and current group were extracted

from the CPRC monthly census. Household, defined as females

that share a common ancestor in the founding population, was

broken into sub-categories based on common ancestors when

these categories matched dominance rank categories too closely

(see below).

Rhesus females form highly despotic, nepotistic, linear and

stable hierarchies in which rank is inherited from the mother

[50,51]. Natal and current rank are similar for females, but not for

males because they disperse at puberty. We assessed natal domi-

nance rank by combining demographic data with behavioural

data obtained from studies conducted in 2007–2012 by ourselves

and colleagues, allowing us to extrapolate the natal rank of young

females and dispersed males. Dominance hierarchies were divided

into three categories: high-, mid- and low-ranking, including all

closely related individuals (mother/offspring, grandmother/

grandchildren and half-siblings) in the same category [52].

Male current dominance rank does not influence skin redness

or darkness [11,19] and was thus not included in the heritability

analyses. However, it is known to influence reproductive success

[27,31] and was thus included in the selection gradient analyses.

We did not have detailed dominance rank from behavioural

observations available for sampled males throughout their repro-

ductive lives. However, rhesus males reach dominance through

queuing [53], leading to a strong association between dominance

rank and residency length [53–55]. As such, we used male dis-

persal rate as a proxy for each male’s average dominance rank

over time, which we calculated as the number of times each

male has changed social group divided by the number of years

since first reproduction. Males who reach high dominance

ranks have a lower dispersal rate, and vice versa.

http://rspb.royalsocietypublishing.org/
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We included estimated female reproductive status in all ana-

lyses. As females become significantly darker at mid-cycle

[12,13], we classified as ‘sexually active’: (i) females who were

seen copulating or in consort [28] when the picture was taken;

and/or (ii) females for which pictures were collected within 10

days of the estimated time of conception (based on the date of

the subsequent birth and a mean 165-day pregnancy length [56])

(n ¼ 39 females; 27 included in selection gradient analyses).

Females whose pictures were taken more than 10 days after

the estimated date of conception were classified as ‘pregnant’

(n ¼ 103 females; 83 included in selection gradient analyses).

We classified in a separate category females estimated to be in

their third trimester of pregnancy (images taken more than or

equal to 100 days after the estimated date of conception), as a

coloured ‘pregnancy mask’ can develop at this time (n ¼ 12

females; five included in selection gradient analyses) [44,45].

Females for which reproductive state could not be estimated

were classified as ‘unknown’ (n ¼ 8 females; seven included in

selection gradient analyses).

Finally, the productivity (i.e. the number of offspring produced

yearly) of the groups in which males reside can influence their

overall reproductive success independently of their dominance

rank, age, skin colour or other traits. As such, we calculated the

average number of offspring born in the groups in which subject

males lived during their reproductive life.
(g) Data analyses
(i) Fecundity and selection gradient
To calculate the effect of the level of trait expression on fecundity,

we used the regression coefficient (or estimate) of general linear

models (GLMs) testing for the effect of skin redness and darkness

(predictors) on fecundity (response) [57,58]. We ran three models

to assess different modes of selection on the trait. First, in order to

estimate the strength of linear (i.e. directional) selection (b) on skin

measures, redness and darkness were standardized, while relative

measures of fecundity were calculated for fecundity by dividing

by the sample average. Second, we estimated quadratic selection

(gii) by squaring the standardized measures of skin redness and

darkness. We included the linear terms in the model to correct

for the effect of directional selection on the variance, and doubled

the regression coefficient and standard errors in order to correctly

estimate selection gradients [59]. Negative quadratic estimates are

suggestive of stabilizing selection (which maintains intermediate

expression), whereas positive estimates are suggestive of disrup-

tive selection (which pushes the distribution of trait values

towards the two extremes). Finally, in order to examine whether

and how skin ornaments and dominance rank interact in influen-

cing fecundity, we calculated the correlational selection gradient

(gij, i = j ) by multiplying both standardized measures of darkness

and of redness with standardized dominance rank. Here, positive

estimates indicate that highest reproductive output is reached

when both traits are at maximal value, whereas negative estimates

suggest that the highest reproductive output is reached when

either one of the two traits is maximized.

For fixed effects, we included natal rank, age and reproductive

status for females, and age, dispersal rate (i.e. estimated average

dominance rank) and average group productivity for males. All

continuous demographic variables were square-root-transformed

in male models to achieve normal distributions; no transform-

ations were required in female models. Moreover, in order to

fulfil model assumptions concerning the distribution of the

residuals, fecundity measures were log-transformed in male

models. However, as the assessment of selection gradients

should be undertaken with non-transformed measures of fecund-

ity [57], we provide the estimates of models using untransformed

measures of fecundity (i.e. b, gii, gij). GLMs were performed in R

using the glm function, with significance level set at a , 0.05.
(ii) Heritability analyses
We analysed the heritability of rhesus facial skin colour using

animal models, which combine pedigree information in linear

mixed effects models to estimate the additive genetic variance of

the trait of interest in the population under study [36,60]. For

both redness and darkness, we fit a univariate general linear

mixed model using the R package MCMCglmm [61,62]. Animal

ID, maternal ID, household and current group were modelled as

random effects, whereas age, sex, natal rank and reproductive

status (females only) were modelled as fixed effects. Sex and

natal rank were subsequently excluded because they were not

significant factors in the models. As the trait is likely to be sex-

influenced (i.e. show greater inheritance in expression from same-

sex parents), we also ran models using data from only males and

females separately, removing information about the opposite sex

parent by creating a unique dummy ID for each subject.

Each model was run for 2 550 000 iterations with the first 50 000 iter-

ationsdroppedasaburn-inandtheprocesssampledevery1000iterations

thereafter. Each model was verified to have converged on a stationary dis-

tribution by visually assessing plots of the Markov chain Monte Carlo

(MCMC) chain. Estimates of additive genetic variance were obtained by

calculating the mode of the posterior distribution of the animal effect. Esti-

mates of the narrow-sense heritability of each visual channel were then

calculated as the proportion of total phenotypic variance explained by

additivegeneticvariance(h2¼VA/VP).Weranthemodelsusingdifferent

priors: (i) flat improper prior; (ii) parameter expanded; (iii) inverse-

Wishart; and (iv) inverse-Gamma [38,60,62,63]. Models with flat priors

would not compute, while those with parameter expanded priors did

not respect MCMC diagnostics related to auto-correlation and the distri-

bution of the posteriors (trace and density estimates) [64]. Of the two

remaining prior types, we selected inverse-Gamma priors based on

consistent production of the lowest deviance information criteria values.
3. Results
Males showed no evidence of fecundity-related differences

linked to sex skin redness or darkness in the linear or quad-

ratic models, but a significant positive relationship was found

for darkness (low luminance) in the correlational model

(figure 1 and table 1). This suggests that optimal fecundity

is observed when darkness and high social status are com-

bined. As for females, redness was positively associated
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Table 1. Selection gradients of skin redness and darkness with standard errors, and corresponding GLM results. (For males, demographic variables were square-
root-transformed and fecundity log-transformed. Estimates of selection gradients provided for males were assessed based on models using non-transformed
measures of fecundity, however (see Material and methods for details). Note that regression coefficients and standard errors of the quadratic selection gradients
were doubled (see Material and methods for more details). Significant selection gradient results are given in bold. AIC, Akaike information criteria.)

linear quadratic correlational

males

redness b ¼ 0.149+ 0.110 gii ¼ 0.080+ 0.173 gij ¼ 20.001+ 0.134

t ¼ 1.329, p ¼ 0.187 t ¼ 1.167, p ¼ 0.247 t ¼21.224, p ¼ 0.225

darkness b ¼ 0.162+ 0.120 gii ¼20.229+ 0.165 gij 5 1.229+++++ 1.337

t ¼ 1.649, p ¼ 0.103 t ¼20.092, p ¼ 0.362 t 5 2.041, p 5 0.044

age t ¼ 0.732, p ¼ 0.466 t ¼ 0.840, p ¼ 0.403 t ¼ 0.807, p ¼ 0.422

dominance ranka t ¼23.208, p ¼ 0.002 t ¼22.961, p ¼ 0.004 t ¼2 2.531, p ¼ 0.014

group productivityb t ¼ 2.494, p ¼ 0.015 t ¼ 2.640, p ¼ 0.010 t ¼ 2.490, p ¼ 0.015

AIC 169.82 171.67 168.88

females

redness b ¼ 0.118 + 0.030 gii ¼ 0.024+ 0.030 gij ¼20.318+ 0.272

t ¼ 3.897, p , 0.001 t ¼ 0.805, p ¼ 0.423 t ¼21.169, p ¼ 0.246

darkness b ¼ 0.013+ 0.035 gii ¼20.000+ 0.024 gij ¼20.407+ 0.230

t ¼ 0.357, p ¼ 0.722 t ¼20.002, p ¼ 0.998 t ¼ 1.769, p ¼ 0.081

age t ¼ 18.767, p , 0.001 t ¼ 18.526, p , 0.001 t ¼ 18.418, p , 0.001

rank t ¼21.847, p ¼ 0.069 t ¼21.702, p ¼ 0.093 t ¼ 2.676, p ¼ 0.351

reproductive statusc t ¼ 2.122, p ¼ 0.037 t ¼ 2.141, p ¼ 0.035 t ¼ 2.676, p ¼ 0.009

AIC 28.793 31.999 40.613
aFor males, dispersal rate is used as a proxy for dominance rank through a subject’s life.
bFor males only. Group productivity is calculated based on the average number of offspring produced yearly in the groups in which each male resided.
cEstimates based on behavioural observation and date of birth during the following birth season (see Material and methods for details).
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with fecundity, such that redder females reproduced at

higher rates (figure 2), but no significant effect was found

in the quadratic or correlational model (table 1).

Facial skin redness and darkness were heritable, with

between 10% and 15% of the variation among subjects

explained by additive genetic variance (h2; table 2). When

the two sexes were considered separately, slightly different

patterns emerged between redness and darkness: heritability

of skin darkness was 2–2.5 times higher for both sexes and
explained 25–30% of the variation, while heritability of red-

ness levels remained roughly the same. It should be noted

that the confidence intervals for skin darkness are very

wide, and overlap with those of skin redness. Environmental

effects were less important for darkness than for redness, in

both the general and sex-linked analyses (table 2).

Age had strong effects on skin darkness, with older indi-

viduals being lighter than younger individuals, and older

males (but not females) being redder (table 2). We also

http://rspb.royalsocietypublishing.org/
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found an effect of reproductive status, mainly owing to preg-

nant females being redder, and sexually active females being

darker, than other females (table 2). Facial skin redness or

darkness was not influenced by sex.
alsocietypublishing.org
Proc.R.Soc.B

281:20141602
4. Discussion
Our results show that inter-individual variation in red skin

coloration influences fecundity and is heritable in Cayo

Santiago rhesus macaques. Based solely on studies showing

female attraction towards dark males [17,19], we would have

expected directional selection on the ornament. Our results

rather indicate that skin darkness provided significant repro-

ductive advantages to males when combined with high

dominance rank—i.e. in a context where males are being poten-

tially successful at both inter-sexual attraction and intra-sexual

competition. As the two traits do not covary, this suggests that

red skin ornaments are under balancing selection, a mechanism

that would contribute to the maintenance of intraspecific vari-

ation. A similar phenomenon has been reported for relative

gonad mass and body size in three-spine stickleback [6], and

male pheromones and dominance rank in cockroaches [5]. In

Cayo Santiago rhesus macaques, male dominance rank is

mainly reached through queuing with little direct fighting

[53–55]. While high dominance rank increases access to a pri-

mary mating tactic, mate-guarding [26,31], the efficiency of this

tactic has been shown to depend greatly on female cooperation

[65]. It is possible that females are more likely to cooperate in

contexts where mate-guarding males are more attractive to

them, such as males who exhibit darker skin colour, though

this is currently untested.

For females, our results show that fecundity was posi-

tively related to skin redness, the aspect of the ornament

that is most likely to be influenced by blood oxygenation,

and in turn by health and condition. As rhesus males are

selective, they may gain by selecting redder females as pre-

ferred mates [18]. However, our perceptual modelling

studies suggest that rhesus macaque coloration varies much

more achromatically than chromatically [11,13], and it thus

remains unclear whether inter-individual variation in redness

alone is perceived by males and thus could be used in mate

selection. As rhesus macaques form stable heterosexual

groups, males may have numerous opportunities to examine

female skin redness in good lightning conditions, which

would allow trait perception. Alternatively, it is possible

that the link between skin redness and fecundity is an

indirect consequence of healthier females producing more

offspring, without a role for sexual selection. Future studies

should examine directly whether inter-female variation in

skin colour influences male mate choice.

When sexes are combined for analyses, skin redness

and darkness showed heritability, but at rather low levels

(h2� 12%), suggesting that they might be highly influenced

by the context in which they are expressed. Based on the

underlying physiology of the trait, this suggests that the

trait is condition-dependent, although this remains to be

tested directly. Interestingly, the two aspects of the ornament

revealed different patterns of heritability when the two sexes

are considered separately. While skin redness heritability

remained around 10%, levels of heritability for skin darkness

increased by up to 2.5-fold. This suggests that skin darkness

might be less condition-dependent than redness, and under

http://rspb.royalsocietypublishing.org/
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some level of sex-influenced inheritance. At 25–30%, skin

darkness reaches levels of heritability similar to those

reported for male body size and weaponry more commonly

encountered in mammals (e.g. white-tailed deer, Odocoileus
virginianus [66]; red deer, Cervus elaphus [67]; Soay sheep [7]).

The difference between skin redness and darkness in pat-

terns of selection and heritability is likely to be linked to the

underlying mechanisms involved in expression of the signal.

Both blood oxygenation (skin redness) and blood flow (skin

darkness) are influenced by various factors affecting health

(see Introduction). However, blood flow in sex skin is further

influenced by the number, sensitivity and activation of oestro-

gen receptors in the facial epidermis capillaries, as well as by

testosterone concentrations in males and oestrogen concen-

trations in females [15]. These are under genetic control and

are likely to be sex-influenced, with genes related to steroid

hormone control particularly influenced by the same-sex

parent. As such, skin darkness created by blood flow is

likely to be the aspect of the ornament that is under sexual

selection through mate choice. We speculate that this may

have evolved to make information about the signaller’s con-

dition conveyed by skin redness more conspicuous. Despite

this, it is important to note that our analyses reveal large con-

fidence intervals for both chromatic and achromatic aspects of

the ornament, leading to an overlap in their ranges. This opens

the question of whether the two components actually exhibit

significantly different levels of heritability. Alternatively,

large intervals could emerge from analyses if unknown factors

not included here also influence trait expression [68], or if

condition-dependence leads to inter-individual variation in

the extent to which genetic background predicts trait expression

at any one time.
In summary, our study reveals that the red skin ornamen-

tation exhibited by rhesus macaques influences fecundity and

is heritable. Collectively, our results suggest that condition-

dependence contributes to inter-individual variation in

sexual skin redness and darkness, with variation in darkness

further maintained by balancing selection owing to an inter-

action between inter- and intra-sexual selection on males.

When combined with prior observational and experimental

evidence, these results confirm that this ornament is under

sexual selection and create arguably the most complete and

thorough evidence for a trait selected through inter- rather

than intra-sexual selection in a large mammal [34].

This work highlights the relevance of using an integrated

approach combining behavioural observations with quanti-

tative genetics as a way of understanding the mechanisms

by which traits are selected and maintained.
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